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A computational method is described for the Rayleigh-Ritz variational method in 
solving nuclear three-body problem where the hard core is included in the two-body 
potentials. Formula manipulation techniques have been developed to carry out all the 
required differentiation and complicated integrations analytically and these have been 
proved to be useful on a high-speed computer. 

1. INTRODUCTION 

The nuclear three-body data (in particular, those of the ground states of HS 
and He3) have been regarded as potentially important sources of information 
on the nuclear forces. In 1935 Thomas [I] showed that the zero range two-body 
nuclear forces would give an infinite triton binding energy. Since then a large 
number of calculations have been carried out on the binding energies of H3 and 
He3. The most extensive calculations have been performed [2] in Australia by Blatt, 
Derrick, Delves, Davies among others by using some ‘realistic’ two-body nuclear 
potentials, which include hard cores. 

The recent electron scattering experiments [3] have added useful information 
on the electromagnetic form factors of the ground states of three-body nuclei. 
This has stimulated active research in the field. 

The problem is also of interest in that it is next in simplicity to the deutron 
problem, but as yet it is not solvable by any analytical method in general, just 
as the helium atom is to the hydrogen atom. Although there have been some 
attempts at direct numerical solution, it is still difficult to deal accurately with the 
differential equations of elliptic type involving three independent variables even 
with the help of high-speed digital computers. 

* Passed away on March 3, 1969, shortly before the completion of the present paper. 
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62 OHMURA, FUJI1 AND MAEDA 

Probably the best way of solving the Schrodinger equation for the three-body 
problem is to use the Rayleigh-Ritz variational method. In fact, the wavefunctions 
of the helium atom have been obtained with successive accuracies culminating 
in Pekeris’ 1078 parameter wave function [4]. All the integrations can be carried 
out analytically by the methods due to Hylleraas [5], Kinoshita [6], and Pekeris, 
among others. Their methods, however, are not suited to our nuclear three-body 
problem, because the system is composed of three particles with (almost) equal 
masses so that the principal s-state is totally symmetric under interchange of 
any pair or particles. Furthermore, the direct application of their methods is 
impossible if the two-body nuclear potentials have hard cores. 

Blatt and his collaborators [2] have adopted elaborate H3 trial wavefunctions 
with three interparticle distances ri (i = I, 2 and 3) (see Fig. 1) as the independent 
variables, and carried out the required triple integrations numerically. 

FIG. 1. Coordinate system for HS and He3. Ms is the mass of .the odd nucleon (i.e., the proton 
in HS and the neutron in Hea.). 

One of the authors (late T. Ohmura) has been studying [7] the isobaric-spin 
of H3 and He3, the effects of the difference between the wavefunction of H3 and 
that of He3, and so on. The present paper reports the computational details 
developed in the calculation. The trial wavefunctions are chosen along a line 
similar to that of Blatt’s group and also that of Hylleraas. The exponential factor 
in Hylleraas’ trial function must be replaced by a more elabolate correlation 
factor in order to take account of the hard core included in the two-body potentials. 
The factor is chosen after Ref. [8, Eq. (17)]. Apart from this factor the polynomial 
expansion in r, , 2 r and r3 is assumed for the trial functions. In principle, this type 
of wavefunctions allows us to carry out all the integrations analytically just as the 
Hylleraas or Pekeris functions do. However, the hard core requires the more 
complicated correlation factor and the triple integration in a very complicated 
domain. 

For the severe demand on computational accuracy, some formula manipulation 
techniques should be used in performing the kinetic energy operations and the 
triple integrations analytically, because no numerical integration formula and no 
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numerical differentiation methods can avoid some inherent truncation and 
rounding errors which make the whole computations inaccurate to some extent 191. 
Some general purpose formula manipulation systems such as FORMAC [lo] 
and LISP 1.5 [I I], have not turned out to be efficient for our problem, because 
they require too much computer storage and inhibitingly enormous computing 
time. 

Therefore, a special purpose symbolic calculation code ‘TRIPLE’ is developed 
in FORTRAN. Our main ideas are matrix representation of polynomials and 
recurrence formula for the kinetic energy operations [12]. The code has proved 
to be useful for our nuclear three-body problem. 

The present paper also complements Ref. [7], because the computational 
details were completely omitted there, although these technical problems are 
rather essential in the success of that calculation. 

In Section 2 we give the Schrodinger equation for our problem and describe 
the trial wavefunctions and the variational procedure for the Schrodinger equation. 
The recurrence formula in constructing the necessary integrands is derived in 
Section 3, and explicit formulae for the integrals are given in Section 4. Various 
programming techniques including the details of matrix representation of poly- 
nomials are explained in Section 5, while the concluding discussions are given 
in Section 6. 

2. VARIATIONAL METHOD 

A. Schriidinger Equation 

If the two-nucleon force is represented by central potentials, the ground state 
wavefunction of three-body nuclei has the form 

y = y/sxz + ?&x1 (1) 
where both x1 and xz are doublet spin functions, which are, respectively, symmetric 
and antisymmetric with respect to the like nucleons 1 and 2 (namely, two neutrons 
in HS and two protons in He3) 

and 
Xl = Ml) km + 42) /w>l 43)/d~ - 1/2/301(l) 42) 43) (2) 

x2 = Ml) P(2) - 43 #x1 >I 43)/ 42. (3) 

The Y8 and Y& are the s-state spatial wavefunctions, symmetric and anti- 
symmetric under the interchange of nucleon 1 and 2, respectively. 
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We will take r, , r2, and r3 as the independent variables which describe the 
system (see Fig. 1). 

The Schrbdinger equation for He3 is now reduced to the following coupled 
differential equations: 

{K + vs”(rJ + V&,)/4 

+ (G/4){ V&l) - 

and 

{K + V’(~3) + WI)/4 

+ (1/W{ K(h) - 

where 

+ Vt(r3)/4 + 3T/,(rd/4 + 3~&$/4 + vc(r3) 

~,(rd - v&d + ~&Jl K = 0, 

~3 ul, 
(4-b) 

2MjMk (4-c) 

We take two-body nuclear potentials of a central type 

(5) 

where the triplet and singlet potentials are defined by 

-A, exp[-aolt(r - D)] r>,D 
O<r<D 

and 
-A, exp[-aol,(r - D)] r>D 

O<r<D. (6-b) 

The force parameters A, , A, , at , and 01, for even parity states were adjusted 
so as to fit the low energy data of the neutron-proton system, and given in Table I 
of Ref. [7]. The parameters At and A, for the odd parity states are the same as 
those for the even parity state for the Wigner force, but only the sign is changed 
for the Majorana force. If At and A, vanish for odd parity states we call it “the 
even parity force,” which is sometimes called as the Serber force also. We consider 
the above three types of nuclear forces. 

The proton-proton potentials V,n and VsD (and also Vfn and Vs”) are taken 
to be the same as the neutron-proton potentials unless otherwise stated. The 
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Coulomb force between two protons in He3 is modified in order to take account 
of the finite size of the proton with the exponential charge distribution of rms 
radius 0.8 fm. 

The explicit form of V,(r) is 

V,(r) = $ [ 1 - (1 $ j+ j% + 4 (/3r)2 + f (/3rr) e+] (7) 

with fi = 4.33 fm-l. 
The Schrodinger equation for H3 is obtained if the Coulomb potential term is 

dropped and the role of the proton and that of the neutron are interchanged. 
Actual calculations are carried out with the constant fi’/k = h2/Mi = 
41.47 MeV . fm2. 

We shall decompose ul, and ul, into various classes of functions each of which 
has a distinct physical meaning. 

ul, = vo + Vl + Wl , ?Pa = v2 - w2 + v, (8) 

The functions o0 and v2 are, respectively, completely symmetric and completely 
antisymmetric under interchange of any of nucleons. The functions v1 and w, 
(vz and w2) are symmetric (antisymmetric) with respect to like nucleons 1 and 2. 
They belong to intermediate symmetry classes of functions of three variables and 
satisfy the following relations, 

v2(12,3) = [v&23, 1) - 2431, U/1/3, (9-a) 
~~(12, 3) = -[v2(23, 1) - ~~(31, 2)1/x& (9-b) 

~~(12, 3) = b,(23, 1) - ~,(31,2w3, (9-c) 

W,(12, 3) = -[w&3, 1) - W,(31, 2)1/d% P-4 

where ~~(12, 3) = vl, v2(12,3) = v2, w,(12,3) = w, and w2(12,3) = w, . 
The principal s-state is represented by v,, , the s’-state by vlx2 + v2xI , the isospin 

T = 3/2 state by w,x2 - w,xl and the completely antisymmetric s-state (called 
here as the s”-state) by v, . All the s, s’ and Y-states belong to the T = l/2 state. 

B. Variational Method 

Let the Eqs. (4-a) and (4-b) be abbreviated by 

(Lss - E) us + L*aYa = 0, 

and 

(10-a) 

(La - E) u/, + L&SYS = 0. (10-b) 
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Multiplying Y8* from the left to Eq. (lo-a), and lu,* from the left of Eq. (lo-b), 
and integrating over the configuration space, we get 

f Ws*Ls,Ys + ‘Ys*LsaYa + Ya*LasYs + Y/,*La,Yal dr 

= E s [Y,*Yl, + Yt,Y/B*] dr, 

where 

(11) 

If * d7 E ,I rl dr, l, r2 dr, J‘“, r3 * f(rl , r2 , r3) dr, 

- j~r2dr2j~r3dr3j~ (rl + r2 + r3) - f(r, + r2 + r3 , r2 , r3) drl 

This triple integration will be called as T-integration in the present paper. 
Let the trial functions ul, and Ya be linear and homogeneous in the adjustable 

parameters qi (i = 1,2,..., n), and let all the quantities be real in our calculation. 
Equation (11) now has the form 

(13) 

with the hermiticity condition 

Mtj = Mji e (14) 

Since the energy E is stationary, partial differentiation of both sides of Eq. (13) 
with respect to qk leads to the equation 

gl Mkiqi = E $I &r), (k = 1, 2,..., 4, (15) 

where use has been made of Eq. (14). The homogeneous n simultaneous equation 
(15) determines the eigenvalue E and the ratios of Q . 
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The assumed trial functions (see Eqs. (1 and 8)) for U, and Ya are 

u. = 8 * ia0 + adrl + r2 + r3) + a2(r12 + r22 + rs2) + a,(r,r, + r,r, + r1r2)}, 

u2 = d/3 8 - {bl(r2 - rl) + b2(r22 - r12> + bdbr, - r2r3)3, 

w2 = d3 6 - (c1(r2 - rl) + c2(rz2 - r12) + c3(rlr3 - r2r3)3, 
(16) 

v3 = dl * 6 * ((r12r2 + r22r3 + rs2rl - r,r22 - r2rs2 - r3r12)}, 

where 

fJ k-“(r~-D) - e-Y(T9-D)]; 

(17) 

0; otherwise 

The functions u1 and W, are obtained from Eqs. (9-b) and (9-d), respectively. 
The constants ~1 and v in the correlation function d are taken from Table II 
of Ref. [8], and considered not to be subject to variation. 

The linear parameters a, , ai , bi , ci (i = 1, 2 and 3) and dl are determined 
according to Eq. (15) so as to minimize the energy E of the system. 

3. RECURRENCE FORMULA FOR KY 

Our trial wavefunctions are now expressed explicitly as follows: 

y8 = 8 * la0 + b&i + r2) + Plr31 + b2(r12 + r22) + P2r3”l 

+ b3(r2r3 + r3rd + P3v211 (18) 

and 

ya = g * Mr2 - h) + y2(r22 - r12) + y3(r3rl - r2r3.3) 

+ d(r12r2 - r1r22 + rs2r3 - r2rs2 + rs2rl - r3r12)}, (19 

where the parameters (at , /3< , ri) (i = 1, 2 and 3) are related to (ai , bi , ci) 
(i = 1, 2 and 3) of Eq. (16) by 

a, + b, + ci = cxi , 

ai - 2bi - 2ci = ‘pi, 

d(b, - Ci) = yi (i= 1,2and3). 

(20) 
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These adjustable parameters a,, (ai , pi , yi ; i = 1,2, 3), d are called ‘state 
vector’ and simply written Y) = {TV}. 

It is necessary for the variational procedure to evaluate the following quadratic 
forms, or matrix elements iVmm, , K,,, and U,,, : 

(21) 

(22) 

+ PC f iTPP 
(23) 

where cSw, etw, tsM, ttAf, fse, e, and @’ specify the two-body nuclear and Coulomb 
potentials, and USw, Utw,... are all quadratic forms in r], . 

For example, USM has the form 

UsM = j ty4 v&-J PI2 + iv&h P23 + Bv.&d Pd YS 
+ <! YdV,(rd P,, - V,(r,) Pd ya 
+ 9 ydv&d P,, - v8(r2) Pd YS 
+ lua@~drl> P2, + %v&3 Pd YxJ dT. (24) 

Here Pi5 are exchange operators, i.e., 

PijWi , rj , 4 = y(rj , ri , d, (25) 

and Us” has the same form as UsM if all the Pij are omitted. 
The quantities (potential energies in the triplet state) UtM and U,” are also 

similarly defined. The quadratic forms C and P correspond to the modified and 
the point Coulomb potentials, respectively, 

and 

(26) 

P = 1 r;l(YB2 + Y,“) d7, (27) 

where, V,(r) is defined in Eq. (7). 
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The term Use is added in Eq. (23) in order to take account of a small violation 
of charge hypothesis for nuclear forces. 

All the triple integrations must be performed over the configuration space 
according to Eq. (12). 

Before evaluating these quadratic forms, we must construct the functions KYS 
and KY&, which are called kinetic energy derivatives, or simply k-derivatives, 
in the present paper. 

As it is seen immediately, these derivatives lead to sums of enormous number 
of terms which are almost impossible to obtain by manual calculations. It is, 
therefore, desirable to derive some recurrence formula which performs these 
formal differentiations and which has a convenient form for use in a digital 
computer. 

For this purpose, we shall first give a derivation of the recurrence relation. 
The wavefunctions (18) and (19) can be represented in the form 

and 

where 

In fact (see Eq. (18) and (19)) 

(1) 1 
9% = 

&) = rl + r2 
. . . 

. . . 

9% (‘) = r,r, 

(i) = r Ta 2 - r 1 

. . . 

. . . 

(28) 

(29) 

(30) 
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The correlation function (17) can be expressed as a sum of simple exponential 
functions, i.e., 

d = fJ sn(k) * exp[-p(“) * (1 - WI 
k=l 

where 
(r - D) = (rl - D, r, - D, r, - D)T, 

P = b-4 t-4 I*), sn(1) = $1, 

e2’ = (p, v, 4, sn(2) = -1, 
. . . . . . 

(31) 

(32) 

p = (u, Y, u), sn(8) = -1. 

This decomposition of d-function to 5 (“J-functions makes it a relatively simple 
matter to construct the recurrence formula for the kinetic energy operation K (4c) 

Really, r,r,r,KY, = K?P~ is reduced to 

K * YJs = c 7), c K&’ * c(k), 
In k 

and the simplest term among yim) and q~k~) being q$” = 1, q$’ * &I!“) can easily 
be obtained after some manipulations, i.e., 

q&)((k) = K . c(k) 

= *(-,$‘@‘r 3 1 
_ @'f~'r~ _ [p'[Prz 

+ .fp’@)r12rz + .$‘@)r12r3 + 51L’.$‘r22r3 

+ &‘.$f’rlr22 + .$f)ff’r,r32 + fY’lP’r2r32 

+ 2(&92 r1r2r3 + 2(&52 rlr2r3 + 2(Ei92 rlr2r3 

- 481"' r2r3 - 4.$)r,r, - 4tF)rlr2) + JXP'"'), (33) 

where 

K E r,r,r,I(. 
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It must be noticed that the right side of this equation is not only a polynomial 
of r, , r2, and r, , but also of @‘, [it’ and 6;“. The fact also holds for higher 
order terms K . {(k)p)(m) #(a) (m = 1, L.., w. 

It will be shown that we can construct the k-derivatives of polynomials of 
higher degree in r, , r, , and r, , with the help of a recurrence formula, in which 
the polynomial of Eq. (33) is the initial function of the recurrence procedure. 

Let us assume that f be a function of the form 

(34) 

and 5 being 

5 = exp (- T tArl, - Q), 

and, furthermore, assume the function g,,, defined by 

is already obtained. g,,, has the form 

It can be shown that the following relation holds: 

(35) 

(36) 

(37) 

Here a,,, is the Kronecker’s delta: 

for 

- 

r..f)=(r,~+6,,~+6,,~) - (5 9) (4 

Substituting (b) into (c) yields Eq. (37). 
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Since the operator K has the form 

here, Q,,,(rl , r2 , r3) are polynomials of rl , r2 , and r3 . Using Eq. (37), K(< . rs *f) 

can be reduced to 

K(bd)= ~Q,.,$&-(5-r.-f), 
919 9 9 

= 2 Q,., . 5 * (rs - 6,~ -$- - &,, -$-) . g,,, , 

(40) 

9 P 

where 

g,,, = 5-l - & (5 * f). (35) 

Because the function f has the form containing only r, , r2 , and r, but not 
51 9 t2 3 and & , there is no term in gD9, which contains .$, , so long as p and q 
are not equal to s, i.e., 

a 
36s gml = 0, if sfp and sfq (41) 

Equation (40) is now from Eq. (41): 

~(5 - rs 10 = 5 * \z rsQe,qgs.q - & (c Q,,sgp,s + c Qs.qRs..)l~ 
939 P * 

Then the following result holds: 

This means that from the function K(c .,f), the k-derivatives of higher order 
functions 5 * r$r$r$f are obtained by recurrent use of Eq. (42). 
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For example, if we define Rt,l,l, by 

5 * &.o.o = K * r1 - 5, 
. . . (43) 

5 * Rl,l,l, = K - r11r12r13 * 5, 12 3 

then from Eq. (42), each RIIIsl, , which is, of course, a polynomial of both & and 
rj (j = 1,2 and 3), is obtained recurrently as follows: 

R ( 
a 

l.o,o = r1 - z ) %.o,o , 
. . . 

(44) 

where Ro,o.o is already obtained in Eq. (23). 
Thus by the relation (42), one will be able to construct the k-derivatives of 

wavefunctions of any order, when they have the form shown in Eqs. (18) and (19). 
Really, K * US (see Eq. (32)) turns out to be 

and a similar result holds for K * ?P, also. 

4. T-INTEGRATION 

The k-derivatives of US and ul, are now obtained in the form 

K * y8ta) = c qm c {(E’“‘) c {ijm’; k 1 L+’ ) lp}, 
112 k i 

(45) 
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where the symbols {ii”‘); k / and 1 rim’} are 

and 

respectively, and LY:~) are scalar coefficients. {& is the state vector which is to be 
adjusted so that the energy is minimized. c(P) stands for an exponential function: 

l$$“‘) = sn(k) exp I- 2 f,(k) . (rl, - D)/ . 
94 

Here, m(k) has a value +l or - 1, according to the index k, and er), p or v, 
according to the indices k and p (see Eq. (31)). 

In the following, we shall consider T-integration of integrands ?P8 + K . ul, , 
?Pa-K-Ya, ?PBta) . (function of rJ * ?PB(%j and others. Since all of our integrands 
are now represented as sums of polynomials of r, , r2 and r, multiplied by the 
exponential functions Qk), the analytical integration is possible using the integra- 
tion-by-parts formula. 

Following the line mentioned above, consider, e.g., s Ys . K . ‘i/, d7 explicitly: 

where we assumed that Ys is represented as 

(48) 
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It can be seen that for our Antegration only a formula (or a computer program) 
which calculates the integrals of the form 

is necessary. 

(49) 

Let the integrand in Eq. (49) be R. The T-integration of R is now, from the 
definition in Eq. (12), 

4% 4 = j @A I; r> d7 

* 0.1 + r2 + r3) ‘l+l ryrp dr, dr2 dr, 1 . (50) 

The second term of the right side of the above equation can be expanded to 

m e--C1~le-(~~-t~~)Ta;e-(~~+~~)T~ri+lr~~+i+f~~+~+l 
12 3 

& 
1 

& 
2 

dr 
3' 

0 

(51) 
Defining &(d, a, Z) by 

I,(d, a, I) = lrn ema’rl dr 
d 

(52) 

with a recurrence relation, 

W, a, 0 = e-ad + f I,(d, a, I - I), a 

Z,(d, a, 0) = e-ad, 
a 

JR 4, then 

(53) 

- UQ 51 + 43, 13 + k + 1)]. (54) 
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By this function J[p, I], lYS . K * ‘ir, dr is found to be 

The other quadratic forms can be obtained in a similar manner. 

5. PROGRAM DESCRIPTIONS 

Following the formulations derived in the preceding chapters, a computer code 
‘TRIPLE’ which computes three-body problems of both H3 and He3, was written 
in FORTRAN for an IBM7090 computer. 

We shall outline some aspects of these programming techniques used here. 

Expression of Polynomials v(rI , r2 , r3) 

Any polynomials which have the form 

may be completely specified by the quantities N and & , l,,, , IzSra , I&, (n = 1, 
2 ,..., N). These quantities are represented as ‘arrays’ in the following manner: 

Example: 

q7 = r1rz2 - 3r,%, f 5r, - 2 

Program: 

INTEGER LENGTH, POWER(3,4) 
REAL COEF(4) 

Value of the Arrays: 

LENGTH r;;l 

POWER 
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Kinetic energy operation KY 
A polynomial of the form 

may be regarded as a polynomial of six independent variables, i.e., & , 6, 6, 
r, , r, and r, . It is completely specified by N and (a . ’ . ?l 7 ~1,nc2.&.n 9 1.n 9 2.a 9 8.n 9 I 1 I ) 
(n = 1,2,..., N). But at the same time, it may also be regarded as a polynomial 
of three independent variables r, , r and r, , the coefficients of which are functions 2 
of 5, , 5, , and & . For the purpose of T-integration, the latter is the better expres- 
sion, while in kinetic energy operations (k-derivatives), we prefer the former. 
Also, it is convenient to express it in a six-dimensional array, where the values 
of the elements are those of 01, and the six indices of which correspond to the 
values knp i2., I by L, I,,, , L . 

Example: 

140 .o,o = -f2’253r13 - t3&rz3 - 5152r33 + &;53r12r2 + --* 

+ S12rlr2r3 + 5‘22r1r2r3 + t32rlr2r3 + a** 

- 4t3rlr2 . 

Value of the corresponding array ROOO: 

All ROOO(i, , iz , i3 , II , I2 , /,) = 0, 

except for 

2?ooo(0, 1, 1, 3,0,0) = -1 
Rooo(l,O, 1,0,3,0) = -1 
Rooo(l, 1, 0, 0, 0, 3) = -1 
Rooo(1,0, 1,2, 1,O) = fl 

. . . 

R000(2,0,0, 1, 1, 1) = +1 
moo(0,2,0, 1, 1, 1) = +1 
moo(0,0,2, 1, 1, 1) = +1 

. . . 

moo(0,0, 1, 1, 1,O) = -4. 
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The recurrence formula (44) for k-derivatives can now be reduced to simple 
operations of the corresponding coefficient matrices. For example, the relation 

R 
( 

a 
LO.0 = r1 

-- 
q, Ro.o.0 1 

is interpreted as follows, representing the corresponding array of R,,,,, by 
R100(il,i2,i3,11,z2,13): 

First, set all the RlOO’s zero. Then, 

for 1, , 1, , I3 = 0, 1, 2 ,... 
for il,iz,i,=0,1,2 

R100(& , 4 , i3 , 4 -k 1, I2 , 1,) 
= RlWi, i2 i3 4 + 1, 1, , , , , 13) 

for i,= 1,2; iz,i3=0,1,2 
- 1, i2 i3, 4 l2 13) , , , 

=RlOO(i,-1 3 i 29l3, . 1 1, 1 2, 1) 3 

+ ROOO(il , i2 , i, , II , It , 13) 

~lRWil , i2 , is , 4 , 4 , I,>. 

The other RibjSk functions are also obtained in a similar way, and any k- 
derivatives of wavefunctions x = K . q are obtained only by summing up the 
necessary Ri,j,rc functions. 

Expression of Polynomials ~(5~~’ g’“’ 5’“’ 17 2 9 8,rl,r2, 3 r ): 

The k-derivative of a wavefunction x = K * q 

has been obtained as a six-dimensional array.,It is now reinterpreted as apolynomial 
of three independent variables r 1 , r2 , and r3 in order to perform the T-integration 
Svxd~. 

The coefficients of the polynomial are also functions of eLk’, .$‘, and eAk’ and 
are in this time regarded as parameters of the computation. They are represented 
as computer functions, or ‘SUBROUTINES,’ which compute their values when 
the values of ,$:k’ are given. These coefficient subroutines are generated beforehand 
by a computer itself and are punched out in the form of standard FORTRAN 
statements. 

We will illustrate this expression, taking again the example R,.,,, . 
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Program for &,0,0 : 

INTEGER LENGTH, POWER(3,13) 

REAL 

Value of LENGTH 

POWER 

Program of the coefficients: 

COEF(13) 

SUBROUTINE COEFNT(COEF, &‘, &‘, e$‘) 

. . . 

AOOO= +I. 

Al00 = tp) 

A010 = [p’ 
. . . 

Al 11 = Sl”’ * [p’ * .$’ 
. . . 

A002 = (@*))’ 
COEF(I) : -A011 
COEF(2) = -A101 

. . . 

COEF(9) = +2. * A002 + 2. * A020 + 2. * A200 
. . . 

COEF(13) = -4. * A001 
RETURN 
END 

r-Zntegration 

A program which computes the triple definite integration 

J[g, f] E / t(g) 1 I} dr = 1 e-~‘~*(‘~-%#%$ d7 
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is written. This routine performs the decomposition of (rl + r2 + r$” according 
to Eq. (51), computes the triple integrations according to the formula (53), and 
sums them up numerically. 

Then, accordingly to Eq. (55), the integration 

is obtained by summing up as many terms as is necessary. 
More simple integrations such as 

are, of course, obtained in a similar way. 

Eigenvalue problem 

All the quadratic forms, or matrices iV, K, and U, are now computed. The 
eigenvalue problem 

(K + U)q = x * ivq 

is solved by the usual Jacobi method. 

6. DISCUSSION 

The idea of matrix representations of polynomials is, of course, classic [13], 
but, to the authors’ knowledge, there are not so many that were well-applied 
to practical problems. The storage schemes of polynomials are very similar to 
the canonical form used in the ALPAK system [14], which has been developed 
as a general system of polynomial (and rational function) manipulation. The 
situation is, however, more complex in our problem, and we were forced to use 
three different storage schemes in the course of our calculations. In any event, 
there is an essential restriction in this method, i.e., the number of independent 
variables should be known beforehand. From our experiences, however, it is one 
of the most powerful tools of formula manipulation, so long as it can be applied 
to a particular problem. Really, in our three-body problem it has proved to be 
very useful. The method also makes it possible to write the whole program in 
FORTRAN, and, therefore, it keeps the computing time within an admissible 
range. This is the key to the success of the whole computation, for it was found 
that such general purpose systems of formula manipulation as LISP 1.5 [l l] and 
FORMAC [lo] consumed too much computing time and core storages for our 
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problems. The ALPAK system too, though we have not tried it, seems to be not 
so efficient because of the complexity of the problem. 

It is interesting, from the physical point of view, to ask whether our methods 
can be applied when more realistic forces are introduced. As Delves and Blatt [I51 
have pointed out, it has not been found possible to integrate the kinetic and 
potential energies analytically when noncentral (tensor and LS) forces are intro- 
duced. Since the methods presented here are, in principle, analytic, they seem to be 
restricted to model forces which are purely central. 

As is easily seen, our differentiation and integration methods can only be 
applied to trial wavefunctions of the form 

K = d * polynomial of (rl , r2 , Y& 

but the degree of polynomials of r, , r and r, can, in principle, be arbitrarily high. 2 
This makes no physical restriction when the central forces are assumed. The only 
practical restriction is the computing time. In an actual calculation, in fact, the 
computing time would vastly increase as the degree of the polynomials increases. 
It is recommended for the saving of computing time to make a table of J[E(“), f] 
beforehand, because the maximum number of the index k is 8, and the combination 
of 1, , I, , and I3 are finite. The computing time for fixed value of p, v, and D is 
about 20 min in IBM 7090. The details of such results is reported in Ref. [7]. 

The accuracy of the integrations could be checked, e.g., by, a formula (see 
Ref. [7, Appendix]) 

s vivi dr = 0 for i f j, (i, j = 0, 1 and 2), 

and, since only the rounding errors could contribute to the total errors of such 
integrations, the actual error was found to be negligibly small. This is, of course, 
the most advantageous point of our method in contrast to other numerical methods. 

ACKNOWLEDGMENT 

The authors wish to thank Professors T. Goto and S. Fujii, and Dr. B. Imanishi, of Depart- 
ment of Physics, Nihon University, for encouragement and helpful discussions. 

We also thank Mrs. T. Mimura for her excellent typing of the manuscript. 
Special thanks are due to Mrs. H. Ohmura, of the Institute for Nuclear Study, University of 

Tokyo, for her help and encouragement in completing this paper. 

REFERENCES 

1. L. H. THOMAS, P&s. Rev. 47 (1935), 903. 
2. G. DERREK AND J. M. BLATT, Nucl. Phys. 8 (1958), 310; Nucl. Phys. 17 (1960), 67. J. M. BLAT 

AND G. H. DERRICK, Nucl. Phys. 8 (1958), 602. G. DERRICK, Nucl. Phys. 16 (1960) 405; 18 
(1960), 303. C. WERNTZ, Phys. Rev. 121(1961), 849. G. DERRICK, D. MUSTARD, AND J. BLATS, 



82 OHMURA, FUJI1 AND MAEDA 

Phys. liev. Lett. 6 (1961), 69. J. M. BLAT, G. H. DERRICK, AND J. N. LYNESS, Phys. Rev. 
Left. 8 (1962), 323. L. M. DELVED AND G. H. DERRICK, Ann. Phys. 23 (1963), 133. L. M. DELVES, 
Phys. Rev. 135 (1964), Bl316. T. KALXITAS AND L. M. DELVES, Nucl. Phys. 60 (1964), 363. 
J. M. BLATT AND L. M. DELVES, PII~x. Rev. Lett. 12 (1964), 544. L. M. DELVES AND J. M. 
BLATT, Nucl. Phys. A98 (1967), 503. 

3. H. COLLARD, R. HOFSTADTWR, E. B. HUGHES, A. JOHANSSON, M. R. YEARIAN, R. B. DAY, 
AND R. T. WAGNER, Phys. Rev. 138 (1965). 

4. C. L. PEKERIS, Phys. Rev. 115 (1959), 1216. 
5. E. A. HYLLERAAS, Z. Phys. 54 (1929), 347. 
6. T. KINOSHITA, Phys. Rev. 105 (1957), 1490. 
7. T. OHMURA, Isobaric-Spin Impurity and Intermediate Symmetry States in Three-Body 

Nuclei, Progr. Theor. Phys. 41 (1969), 419. 
8. T. OHMURA (formerly KIKUTA), M. MORITA, ANLI M. YAMADA, Progr. Theor. Phys. 15 (1956), 

222. 
9. D. MUSTARD, et al., Computer J. 6 (1963), 75. 

10. FORMAC (operating and user’s reference manual), No. 7090 R2.IBMOO16, IBM Program 
Inf. Dept., New York, Aug. 1965. 

11. J. MCCARTHY, et al., “LISP 1.5 Programmer’s Manual,” M.I.T. Press, Cambridge, Mass., 
1965. 

12. T. KUROSAWA, E. MAEDA, H. Fum, AND K. SHIMIZU, “Some Techniques of Formula Mani- 
pulation for the Solution of Nuclear Three-Body Problem,” (Japanese), J.I.P.S. Symposium 
on Programming, 1968, C-35, Jan. 1968. 

13. K. SPIELBERG, J.A.C.M. 8 (1961), 4. A. R. ROM, Comm. A.C.M. 9 (1961). J. E. SAMMET, 
Comm. A.C.M. 9 (1966), 8. 

14. W. S. BROWN, Bell Syst. Tech. J. 42 (1963), 2081-2119. W. S. BROWN, J. P. HYDE, AND 
B. A. TAGUE, Bell Syst. Tech. J. 43 (1964), 795-804. 

15. L. M. DELVES AND J. M. BLATT, Nucl. Phys. A98 (1967), 503. 


